Magnetic Resonance Electrical Impedance Mammography (MREIM)

A new approach to breast cancer imaging

Maria Kallergi,¹ John J. Heine,² and Ernest Wollin³ ¹ TEI of Athens, Athens, Greece ² Moffitt Cancer Center & Research Institute, Tampa, FL ³ Wollin Ventures, Inc, Sarasota, FL

What do we propose?

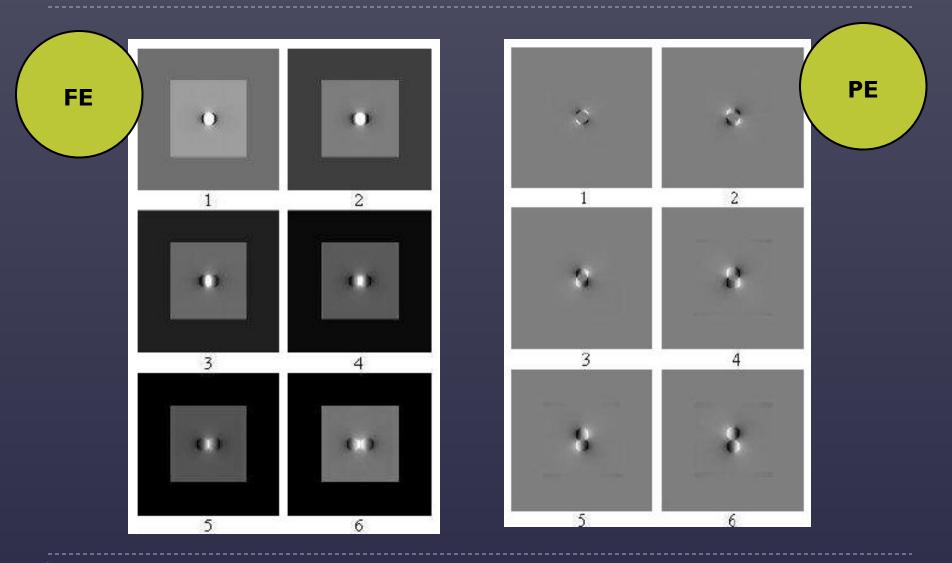
- Combination of magnetic resonance and electrical impedance for breast imaging
 - Combination of magnetic differences with electrical conductivity differences between normal and malignant breast tissue

Why this combination?

- All in the effort to increase specificity which is low to moderate in standard breast MRI and thus avoid false positive detections and negative biopsies
- All in the effort of developing a more sensitive and specific tool than mammography for breast cancer screening and diagnosis without any unwanted effects
- All in the effort of a highly sensitive and specific technique without the challenges of image reconstruction and patient risk (MREIT or Tomosynthesis)

MREIM in a nutshell

- Current is supplied to electrodes embedded within breast coil stabilization paddles during MR image acquisition
- Current creates magnetic field that interferes with the normal MR image acquisition mainly in areas of higher conductivity (malignant tissue)
- Subtraction of images obtained with current on and off will produce a signature of malignancy

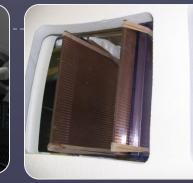

Can it deliver?

- □ Theory
- Experiment
- □ Simulation

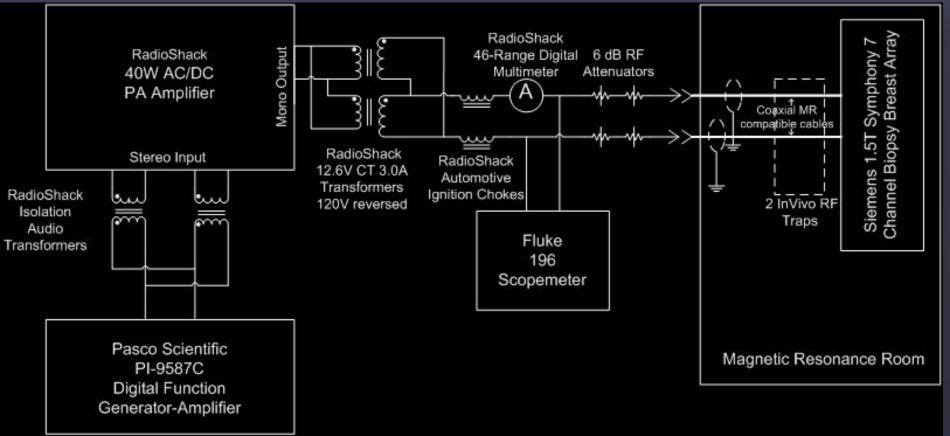
Theory

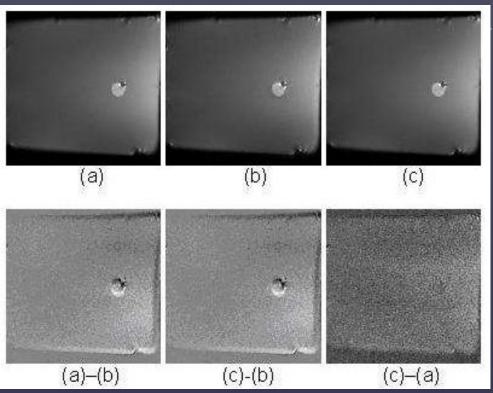
- Malignant breast tissue has higher electrical conductivity (3-40 times) than normal and benign breast tissue
- Current creates magnetic field that interferes with the normal MR field
 - Interference effect is particularly enhanced in areas of higher conductivity such as breast malignant tissues
- The subtraction of the images obtained with current on and off is likely to have a specific "signature" related to malignancy
- □ Mathematically ... it works out!

THEORY: MREIM Effects

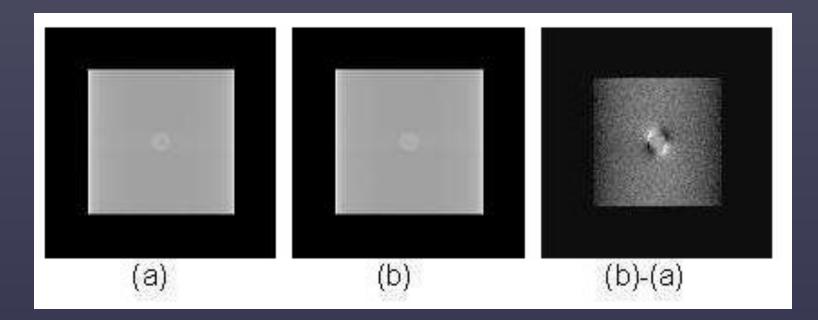

Experiment

- Breast Phantom
- Faraday Shields
- Phantom-Faraday Shields Coupling
- □ Circuitry
- Sequence for Phantom Imaging


MREIM Apparatus & Circuitry



Experimental Result


Images (sagittal view) of phantom with tumor surrogate acquired with a spin density spin echo sequence with TE=50 ms, TR=2 s, NEX=1, slice thickness=4mm, FOV=128 mm, dx=1 mm and df=60 Hz/pix

(a) Current off, (b) Current on $(i = IOA/m^2$ at f = 300 Hz), (c) Current off.

Simulation

- Replicate and explain experimental results
- Determine MREIM effect for various tumor models
- Optimize MREIM sequence for well-defined differential signal at low applied currents
 - Used MR spin-echo sequence
 - □ Frequency encode effect
 - Detects the tumor bed
 - Phase encode effect
 - Detects boundaries where conductivity changes

Simulation Result

(a) Current off

(b) Current on $(i = 10 \text{ A/m}^2 \text{ at } f = 300.008 \text{ Hz}, \text{ df} = 60 \text{ Hz/pix and }, \text{STD}_{noise} = 2)$

(b)-(a) Subtraction image of current on and current off

Where we are

- Theory and simulation agree
- □ Theory, simulation, and experiment agree
- Proof of concept demonstrated

Next Step

- Develop modality specific phantom with stable electrical and physical properties
- Optimize MREIM sequence through phantom experiments
- Construct MR compatible, comfortable, and patient safe clinical system
- Clinical trial

Breaking News

AB Miller, C Wall, CJ Baines, P Sun, T To, and SA Narod (BMJ 2014;348-g366)

□ 25-year follow up of mammography-based screening

- "… education, early diagnosis, and excellent clinical care should continue to be provided to women to ensure that as many breast tumours as possible are diagnosed at or less than 2 cm."
- " ... the value of mammography screening should be reassessed."

Thank you

And ... special thanks to Nataliya Kovalchuk, who did most of the pilot experiments during her PhD work at University of South Florida and Moffitt Cancer Center & Research Institute