[0001] Introduction to Simultaneous Nutation and Periodic Phase Encoding of Moving Spins ("SNAPPEMS")

[0002] Transient response of spin systems have usually been described by solutions to the Bloch equations (Slichter, C.P. "Principles of Magnetic Resonance", Third Edition. Springer-Verlog 1989, p.33, Ch. 2) which describes the magnetization as a function of both the applied magnetic fields and the relaxation effects on a phenomenological basis. Solutions to the Bloch equations require assumptions about the magnitude of these parameters and prescription of boundary conditions, creating a differential system applicable to a particular set of circumstances. To simplify this process further, the description below begins with the equation of motion of an isolated spin, modeled as gyroscopic precession creating a magnetic moment which interacts with moments created by applied magnetic fields, then introduces the total magnetization as a function of spin density, and finally limits the applicability of the equations so derived by the relationship between the times of the event sequence to the relaxation times.

[0003] Gyroscopic Precession

[0004] "A rigid body free in space without any constraints can rotate permanently only about a principal axis of inertia" (Den Hartog, J.P., "Mechanics". McGraw Hill Book Co., 1948. Dover Publications Inc. 1961, p. 315 No XII). "If a rigid body rotates with speed ω_{1} about a principal axis of inertia, and with $\omega_{2}=\omega_{3}=0$ about the other two principal axes, then the angular momentum vector (i.e. moment of momentum vector) \vec{M} has the same direction as the angularspeed vector $\vec{\omega}_{1}$ (which is along the axis of rotation)," (Hartog, J.P., op. cit., p. 315 No VIII). "Angular velocities of a rigid body about various axes in space, all intersecting in a point, can be compounded vectorially into a resultant angular speed about THE axis of rotation" (Hartog, J.P., op. cit. p. 314 No III).
[0005] We infer from the last statement that the resultant angular speed ω_{1} about THE axis of rotation taken as the resultant angular velocity $\vec{\omega}$ can be decomposed into a vector sum of angular velocities $\sum \overrightarrow{\omega_{n}}$. Further, taking the rigid body as having mass symmetrically distributed about all axes through the center of mass yields a constant scalar moment of inertia I_{0} about all axes, leading to the desired result decomposing the angular momentum vector \vec{M} :

$$
\vec{M}=I_{0} \vec{\omega}=\sum_{n} I_{0} \overrightarrow{\omega_{n}}
$$

[0006] From Newton's equations (Hartog, J.P., op. cit., p.277, eq.27b), with $\overrightarrow{M_{G}}$ being the moment of external forces about the center of mass:

$$
\overrightarrow{M_{G}}=\frac{d}{d t} I_{0} \vec{\omega}=\sum_{n} \frac{d}{d t} I_{0} \overrightarrow{\omega_{n}}
$$

[0007] Thus the vector sum of the moments of a set of external forces $\sum \overrightarrow{M_{G_{n}}}$ equals the time rate of change of the total angular momentum $I_{0} \vec{\omega}$, i.e:

$$
\vec{M}_{G}=\sum_{n} \overrightarrow{M_{G n}}=\frac{d}{d t} I_{0} \vec{\omega}=\sum_{n} \frac{d}{d t} I_{0} \overrightarrow{\omega_{n}}
$$

[0008] Gyromagnetic Ratio

[0009] Taking the rigid body as having a symmetrical distribution of charge about the center of mass creates a magnetic moment $\vec{\mu}$ about any axis of rotation proportional to the angular velocity $\vec{\omega}$ about that axis of rotation (Smythe, W.R. "Static and Dynamic Electricity", Second Edition. McGraw Hill Book Co 1950, p.260) where each element of charge dq at distance r from the axis of rotation creates an element $d \vec{\mu}$ of this magnetic moment $\vec{\mu}$ where, by definition of the magnetic moment,

$$
d \vec{\mu}=\left(\pi r^{2}\right)(r \vec{\omega}) \frac{d q}{2 \pi r}
$$

(Balanis, C.A., "Advanced Engineering Electromagnetics". John Wiley and sons 1989, p.87, eq.2-82).
[0010] Each element of mass dw at distance r from this axis of rotation creates an element of the angular momentum (moment of momentum) dM of (Hartog, op. cit., p.276)

$$
d \vec{M}=(r)(r \vec{\omega}) d w \text { (Balanis, op. cit., p.87, eq. 2-83). }
$$

[0011] The ratio is assumed to be a constant:

$$
\frac{d \vec{\mu}}{d \vec{M}}=\frac{1}{2}\left(\frac{d q}{d w}\right) \equiv \gamma \quad \text { (Balanis, op. cit., p.87, eq. 2-84). }
$$

γ being a scalar constant termed the gyromagnetic ratio. Integrating, with boundary condition $\vec{\mu}=0$ when $\vec{M}=0$ yields:

$$
\vec{\mu}=\gamma \vec{M}
$$

[0012] General Equation of Motion of an Isolated Spin

[0013] A magnetic moment $\vec{\mu}$ subjected to a field of magnetic induction \vec{B} will experience a mechanical moment (torque) $\overrightarrow{M_{G}}$ such that:

$$
\overrightarrow{M_{G}}=\vec{\mu} \times \vec{B} \quad \text { (Smythe, W.R., op. cit., p.261) }
$$

[0014] In free space of permeability μ_{0}, the magnetic induction \vec{B} is proportional to the magnetic field intensity \vec{H} :

$$
\vec{B}=\mu_{0} \vec{H}
$$

[0015] Equating the rate of change of the angular momentum to the applied mechanical moment (torque) yields

$$
\vec{\mu} \times \vec{B}=\frac{d}{d t} \vec{M} \text { (Slichter, op. cit., p.11, eq. 2.1) }
$$

[0016] Multiplying by the gyromagnetic ratio γ and substituting $\vec{\mu}=\gamma \vec{M}$ and $\vec{B}=\mu_{0} \vec{H}$ yields

$$
\vec{\mu} \times\left(\gamma \mu_{0}\right) \vec{H}=\frac{d}{d t} \vec{\mu}
$$

[0017] Defining $\gamma^{\prime}=\gamma \mu_{0}$ yields the equation of motion of a magnetic moment (spin) subjected to a magnetic field intensity \vec{H} :

$$
\vec{\mu} \times \gamma^{\prime} \vec{H}=\frac{d}{d t} \vec{\mu} .
$$

[0018] Dividing by μ yields the instantaneous angular velocity of a magnetic moment (spin) $\vec{\mu}$ subjected to a time varying ambient magnetic field intensity \vec{H} :

$$
\vec{I}_{\mu} \times \gamma^{\prime} \vec{H}=\frac{d}{d t} \vec{I}_{\mu}
$$

which is a linear differential equation with constant coefficients, allowing superposition.

[0019] Decomposing \vec{H} into H_{0}, h_{p}, and h_{n}

[0020] Define an orthogonal coordinate system for \vec{I}_{μ} and \vec{H} as $\vec{z}, \vec{x}, j \vec{y}$ where $\vec{x}+j \vec{y}$ forms Gaussian planes everywhere orthogonal to \vec{z}. This allows decomposition of the ambient magnetic field intensity \vec{H} such that:

$$
\vec{H}=\left[H_{0}+h_{p} \cos (\Omega \mathrm{t})\right] \vec{Z}+\overrightarrow{h_{n}} e^{j \gamma^{\prime} H_{0} t},
$$

where H_{0} is a strong non-time variant ambient magnetic field intensity, h_{p} is co-aligned with H_{0} and sinusoidally periodic at frequency Ω, and h_{n} is everywheres orthogonal to H_{0} rotating in the local orthogonal $\vec{x}, j \vec{y}$ Gaussian plane at angular velocity $\gamma \mu_{0} H_{0}=\gamma B_{0}=\omega_{0}$, which is the mean Larmor frequency.

[0021] Equation of Motion of SNAPPEMS

[0022] Substituting and rearranging in differential form

$$
d \vec{I}_{\mu}=\left(\vec{I}_{\mu} \times \gamma^{\prime} H_{0} \vec{Z}\right) d t+\left(\vec{I}_{\mu} \times\left[\gamma^{\prime} h_{p} \cos (\Omega t)\right] \vec{z}\right) d t+\left(\vec{I}_{\mu} \times \gamma^{\prime} \overrightarrow{h_{n}} e^{j \gamma^{\prime} H_{0} t}\right) d t
$$

since the vector product (cross product) distributes across a vector sum.
[0023] The first term creates a constant precession of \vec{I}_{μ} of angular velocity $\gamma^{\prime} H_{0}$ about the \vec{z} axis.
[0024] The second term creates a periodic precession of \vec{I}_{μ} of peak angular velocity $\gamma^{\prime} h_{p}$ and temporal frequency Ω about the \vec{z} axis.
[0025] The third term represents a periodic precession of \vec{I}_{μ} of peak angular velocity $\gamma^{\prime} h_{n}$ about an axis perpendicular to the \vec{z} axis, said axis rotating with angular velocity $\gamma^{\prime} H_{0}$ in the $\vec{x}+j \vec{y}$ Gaussian plane, a periodic Bloch-Siegert effect (Sacolick et. Al., Magn. Reson. Med. 2010 May; 63 (5): 1315-1322)
[0026] These three instantaneous angular velocities add vectorially to a resultant angular velocity, which when integrated over time, creates the locus of \vec{I}_{μ} in space.

If $\gamma^{\prime} h_{n} \ll \gamma^{\prime} h_{p} \ll \gamma^{\prime} H_{0}$, the locus of the unit vector \vec{I}_{μ} describes a serpiginous line of colatitude θ and longitude φ on a unit diameter sphere, said sphere rotating with an angular velocity $\gamma^{\prime} H_{0}$ in the local $\vec{x}+j \vec{y}$ Gaussian plane (Slichter, op. cit., Ch. 2.4, p.20). The rate of increase of θ is maximum at the poles $(\theta=0, \pi)$ and decreases at mid-latitude to .340 of maximum at the equator $(\theta=\pi / 2)$. The governing equations are:

$$
\begin{gathered}
\overrightarrow{1}_{u} X \gamma^{\prime} \overrightarrow{h_{n}^{\prime}} \triangleq \vec{\omega}=\frac{d \vec{\theta}}{d t}=\overrightarrow{1}_{u} X\left[\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \varphi\right]^{\frac{1}{2}} \gamma^{\prime} \vec{h}_{n} \\
\overrightarrow{1}_{u} X \gamma^{\prime} \vec{h}_{p}=\vec{\omega}_{p}=\frac{d \vec{\varphi}}{d t}=\gamma^{\prime} \vec{h}_{p} \cos \Omega t
\end{gathered}
$$

$$
\vec{\varphi}=\int \vec{\omega}_{p} d t=\frac{\gamma^{\prime} h_{p}}{\Omega} \sin \Omega t ; \frac{\gamma^{\prime} h_{p}}{\Omega} \cong 1.8, \text { to maximize } J_{1}(\text { vide infra })
$$

$$
\begin{gathered}
h_{n}^{\prime} \triangleq h_{n}\left[\cos ^{2} \theta+\left(\sin ^{2} \theta\right)\left[\cos ^{2}\left(\frac{\gamma^{\prime} h_{p}}{\Omega} \sin \Omega t\right)\right]\right]^{\frac{1}{2}} \\
A s \theta \rightarrow(0, \pi) h_{n}^{\prime} \rightarrow h_{n} \\
\gamma^{\prime} h_{n}^{\prime} \triangleq \gamma^{\prime} h_{n}\left[1-\sin ^{2} \theta\left[1-\cos ^{2}\left(\frac{\gamma^{\prime} h_{p}}{\Omega} \sin \Omega t\right)\right]^{\frac{1}{2}}\right. \\
\frac{d \theta}{d t}=\gamma^{\prime} h_{n}\left[1-\sin ^{2} \theta \sin ^{2}\left(\frac{\gamma h_{p}}{\Omega} \sin \Omega t\right)\right] \\
\int_{0}^{\tau} \gamma^{\prime} h_{n} d t=\int_{0}^{\theta}\left[1-\sin ^{2} \theta \sin ^{2}\left(\frac{\gamma^{\prime} h_{p}}{\Omega} \sin \Omega t\right)\right]^{-\frac{1}{2}} d \theta \\
\gamma^{\prime} h_{n} \tau=\int_{0}^{\theta}\left[1-\sin ^{2} \theta \sin ^{2} \varphi\right]^{-\frac{1}{2}} d \theta \\
\gamma^{\prime} h_{n} \tau \triangleq F(\theta \backslash \varphi)
\end{gathered}
$$

Which is an incomplete elliptic integral of the first kind with a periodic modular angle, and is not integrable. (Abramowitch, M., Stegun, 1. A. eds. "Handbook of Mathematical Functions" Ninth Edition, Dover Publications Inc. 1965, P589 eq. 17.2.6.)

[0027] Output Voltage in Receiver Coil

[0028] Define the transverse magnetization $\vec{\mu}_{T}$ as the projection of the magnetic moment $\vec{\mu}$ on the $\vec{x}+j \vec{y}$ Gaussian plane, which plane is transverse to the \vec{z} axis, such that:

$$
\vec{\mu}_{T}=(\vec{\mu} \sin \theta) e^{j ब}
$$

where θ is the colatitude of $\vec{\mu}$ with respect to the \vec{z} axis, and φ is the longitude taken from a zero meridian through the \vec{z} and $j \vec{y}$ axes. The instantaneous angular velocity of \vec{u}_{T} in the $\vec{x}+j \vec{y}$ Gaussian plane then is:

$$
\vec{\omega}_{T}=\left(\gamma^{\prime} h_{p} \cos (\Omega t)+\gamma^{\prime} H_{0}\right) \vec{z}
$$

creating a phase incrementation φ of $\vec{\mu}_{\mathrm{T}}$ at time t of

$$
\vec{\varphi}=\int_{0}^{\tau} \vec{\omega}_{T} d t=\left(\frac{\gamma^{\prime} h_{p}}{\Omega} \sin (\Omega t)+\gamma^{\prime} H_{0} t\right) \vec{z} .
$$

[0029] A coil of N turns will subtend the rotating magnetization of $\overrightarrow{\mu_{T}}$ such that:

$$
\mu_{c}=\mu \sin \theta(\sin \varphi)=(\mu \sin \theta) \sin \left[\frac{\gamma^{\prime} h_{p}}{\Omega} \sin (\Omega t)+\gamma^{\prime} H_{0} t\right] .
$$

[0030] By Faraday's law, the voltage induced in the coil is

$$
\begin{aligned}
V=N \mu_{0} \frac{d \mu_{c}}{d t}= & N \mu_{0}\left((\mu \sin \theta)\left(\gamma^{\prime} h_{p} \cos (\Omega t)+\gamma^{\prime} H_{0}\right)\left(\cos \left[\frac{\gamma^{\prime} h_{p}}{\Omega} \sin (\Omega t)+\gamma^{\prime} H_{0} t\right]\right)\right. \\
& \left.+\sin \left[\frac{\gamma^{\prime} h_{p}}{\Omega} \sin \left(\Omega t+\gamma^{\prime} H_{0} t\right)\right](\mu \cos \theta)\left(\frac{d \theta}{d t}\right)\right)
\end{aligned}
$$

Since $\frac{d \theta}{d t} \leq \gamma^{\prime} h_{n} \ll \gamma^{\prime} h_{p} \ll \gamma^{\prime} H_{0}$:

$$
V \cong N\left(\mu_{0} \mu \sin \theta\right)\left(\gamma^{\prime} H_{0}\right)\left(\cos \left[\frac{\gamma^{\prime} h_{p}}{\Omega} \sin (\Omega t)+\gamma^{\prime} H_{0} t\right]\right),
$$

where N is the number of turns in the coil, μ_{0} is the permeability of free space, H_{0} is the main magnetic field intensity, γ^{\prime} is the gyromagnetic ratio $\mu_{0} \gamma, h_{p}$ is the peak magnetic field intensity of the phase modulating field of temporal frequency Ω, and θ is the colatitude of the magnetic moment (spin) of magnetic field intensity μ.
[0031] The Fourier transform of V with respect to time is

$$
\left.\mathfrak{I V}\right|_{\omega}=\pi A \sum_{=-\infty}^{+\infty}\left[J_{n}\left(\frac{\gamma^{\prime} h_{p}}{\Omega}\right) \delta_{\left[\omega-\left(\gamma^{\prime} H_{0}+n \Omega\right)\right]}+J_{n}\left(\frac{\gamma^{\prime} h_{p}}{\Omega}\right) \delta_{\left[\omega+\left(\gamma^{\prime} H_{0}+n \Omega\right)\right]}\right],
$$

where $A=N\left(\mu_{0} \mu\right)\left(\mu_{0} H_{0}\right) \gamma \sin \theta$. (Poularikas, A.D. ed. "The Transforms and Application Handbook" CRC IEEE Press 1995, op. cit. p. 221, eq. 2.82)

[0032] Phase Modulating Field

[0033] Three voltages are induced in the receiver coil; the first by h_{p} at a low frequency Ω, the second by h_{n} of radio frequency (RF) frequency $\gamma^{\prime} H_{0}=\gamma \mu_{0} H_{0}=\gamma B_{0}=\omega_{0}$, and the third by the precession of the magnetic moment $\vec{\mu}$ (spin) consisting of a central frequency ω_{0} with an infinite number of sidebands spaced about this central RF Larmor frequency ω_{0} at frequency intervals Ω. These sidebands permit adjustment of h_{n} for the maximum output voltage in the receiver coil since they can be detected in the presence of the Larmor RF frequency ω_{0} and the phase modulating low frequency Ω by rejecting these latter frequencies with circuit filters and/or by detection, heterodyning, and homodyne demodulation techniques employed in standard radio receivers. This received first sideband voltage is maximized if the argument of the first sideband is adjusted so that:

$$
J_{1}\left(\frac{\gamma^{\prime} h_{p}}{\Omega}\right) \cong J_{1}(1.8) \cong 0.582 \text { (Abramowitz, op. cit. p. } 390 \text {) }
$$

yielding

$$
\Omega=\frac{\gamma \prime h_{p}}{1.8}=\frac{\gamma \mu_{0} h_{p}}{1.8}=\frac{\gamma b_{p}}{1.8}=\frac{2 \pi\left(42.589 \times 10^{6}\right)}{1.8} \cdot b_{p},
$$

then the side band frequency $f_{p} \cong 23.6 \times 10^{6} \cdot b_{p}$ where $2 \pi f_{p}=\Omega$. The peak excursion of the magnetic moment (spin) from the plane containing H_{0} and orthogonal to h_{n} is ± 1.8 radians, or \pm 103 degrees.
[0034] Thus, Ω and h_{p} are so defined but are independent of the main magnetic field strength H_{0} or Larmor frequency $\gamma^{\prime} H_{0}=\gamma \mu_{0} H=\gamma B_{0}=\omega_{0}$.

[0035] Flow Meter Application

[0036] If the magnetic moments (spins) $\vec{\mu}$ dwell in a space containing H_{0} and h_{p} for a time sufficient to create significant magnetic field intensity (Slichter, op. cit. Ch.2.11, p.51) and then move through a space additionally containing h_{n} for a dwell time such that nutation occurs through an angle $\theta=\pi$, maximum energy is absorbed by the magnetic moments (spins) $\vec{\mu}$ (Balanis, op. cit. p.86, eq.2-81).
[0037] A medium (lattice) containing a distribution of magnetic moments $\vec{\mu}$ (spins) traversing a conduit of length L_{1}, in which these magnetic moments are subjected to both a strong magnetic field intensity $\overrightarrow{H_{0}}$ and co-aligned weak component h_{p}, sinusoidally varying with a frequency Ω, will absorb energy from the magnetic moments by first order kinetics, opposed by random thermal motion, creating a magnetic field intensity \vec{m} such that

$$
\widehat{\vec{m}}=\widehat{\vec{\chi}}\left(\vec{H}_{0}+\vec{h}_{p} \cos \Omega t\right)\left(1-e^{-t / T_{1}}\right)
$$

(where $\mathcal{=}$ denotes both spatial vector and temporal phasor) (Slichter, op. cit., p.51-59, ch.2.11), $\widehat{\bar{\chi}}$ being the complex susceptibility (Slichter, op. cit., p.35-39, ch.2.8), T_{1} the spin-lattice relaxation (Slichter, op. cit., p.8, eq.1.31)
[0038] The sensitive volume V is the space occupied by the magnetic fields H_{0}, h_{p}, and h_{n}, as previously defined. If the spins occupy the volume V for the mean time τ the flow rate is V / τ. After the mean time τ the spins are at colatitude ("flip" angle) θ and phase angle φ as governed by $\gamma^{\prime} h_{n} \tau=F(\theta \backslash \varphi)$. Then

$$
\frac{V}{\tau}=\gamma^{\prime} \frac{h_{n}}{F(\theta \backslash \varphi)} V
$$

the detectable transverse magnetization is $M=\int_{0}^{\theta} m \sin \theta d \theta \quad M=m(1-\cos \theta)$. For maximum $\mathrm{M}, \frac{d M}{d \theta}=m \sin \theta=0 ; \theta=n \pi . F(\pi \backslash \varphi)=2 F(\pi / 2 \backslash \varphi)=2 K$ (Abramowitch, loc. cit., 17.4.3) K is a complete elliptic integral of the first kind. φ is the modular angle (Abramowitch, loc. cit., 17.2.1). φ is periodic, $\varphi=\frac{\gamma h_{p}}{\Omega} \sin \Omega t$, a formulation not treated elsewhere.

$$
\begin{gathered}
K \triangleq \int_{0}^{\pi / 2}\left[1-\left(\sin ^{2} \varphi\right)\left(\sin ^{2} \theta\right)\right]^{-1 / 2} d \theta \text { (Abramowitch, loc. cit., 17.3.1) } \\
\text { if } \frac{d \theta}{d t} \ll \Omega \text {, then } \frac{d \theta}{d \varphi} \cong o . \sin ^{2} \varphi=1-\cos ^{2} \varphi \triangleq m . \\
\cos \varphi \triangleq \frac{1}{2 \pi} \int_{-\pi}^{+\pi} \cos \left(\frac{\gamma h_{p}}{\Omega} \sin \Omega t\right) d(\Omega t)=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\frac{\gamma h_{p}}{\Omega} \sin \Omega t\right) d(\Omega t)
\end{gathered}
$$

But $J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \varphi-n \varphi) d \varphi ;($ Bessel) (Jahnke and Emde, op. cit., p150)

$$
\begin{gathered}
J_{0}\left(\frac{\gamma h_{p}}{\Omega}\right)=\frac{1}{\pi} \int_{0}^{\pi} \cos \left(\frac{\gamma h_{p}}{\Omega} \sin \Omega t\right) d(\Omega t) \\
m=1-J_{0}^{2}(1.8)=1-(.340)^{2}=.884 ; K=\int_{0}^{\pi / 2}\left[1-.884 \sin ^{2} \theta\right]^{-1 / 2} d \theta=2.5 \\
V / \tau=\left[\frac{\gamma^{\prime}}{2(2.5)}\right] V h_{n}=\left[\frac{\gamma}{2(2.5)}\right] V b_{n}=\left[\frac{2 \pi\left(42.6 \times 10^{6}\right)}{2(2.5)}\right] V b_{n} \text { Tesla } \\
V / \tau=53.5 \times 10^{6} V b_{n} \text { Tesla }=5.35 \times 10^{3} V b_{n} \text { Gauss }
\end{gathered}
$$

[0039] Noise Budget

1) Major Components:
a) Main Magnet plus RF shielding
i) Resistive - D.C. power supply and hot coil can be source of RF noise mutually coupled to receiver coil.
ii) Permanent - Thermal noise capacitively coupled to receiver coil.
iii) Superconducting - minimal noise.
iv) Hybrid - as above.
b) Phase Modulating Coil and ELF Power Supply
i) Stable C.W. ELF (1-10 kHz) Power Supply must be monochromatic and with adjustable but constant current output.
ii) Phase Modulating Coil of low resistance to reduce thermal noise.
c) RF Transmitter Coil and Adjustable RF Power Supply
i) RF Transmitter Coil of low resistance to reduce thermal noise.
ii) Monochromatic RF Power Supply auto-tuned to the slightly variable Larmor frequency.
d) RF Receiver Coil and RF Receiver Circuit.
i) RF Receiver Coil of low resistance forming a very high Q resonant circuit.
ii) RF Receiver Circuit impedance matched to RF Receiver coil with crosscorrelation to RF Power Supply frequency to extract received signal from received noise.
e) Controller Circuit controls RF Transmitter Power Supply Larmor frequency and measured value of current output to RF Transmitter Coil to achieve maximum RF Receiver Circuit output.
2) Schedule of Major Components:
a) Main Magnet L_{2}, Magnetizing Magnet L_{1}
b) Phase Modulating Coil
c) Phase Modulating Coil Power Supply, ELF (1-10 kHz)
d) RF Transmitter Coil
e) RF Transmitter Coil Power Supply, Larmor frequency
f) RF Receiver Coil
g) RF Receiver Circuit
h) Controller Circuit
i) Conduit and Mechanical Supports and Seals
3) Noise Contributions in Order of Severity:
a) The two power supplies should be monochromatic dedicated circuitry.
b) The three coils must be high Q , low resistance, low noise.
c) The receiver coil must be a narrow passband resonant circuit that does not oscillate when impedance matched to the receiver.

[0040] Signal Strength

[0041] Signal strength varies as the square root of the Main Magnet L_{2} field strength, and linearly with the area of the Receiver Coil, the latter being a function of conduit diameter. Field homogeneity in the receiver section L_{2} is a function of the shape of the Main Magnet. The dwell time τ_{1} in the magnetizing section of length L_{1} must be a significant fraction of the spin-lattice relaxation time of the moving material T_{1}.

[0042] Rangeability

[0043] The Range of Velocity v should be converted to dwell times τ_{1} and τ_{2} for lengths L_{1} and L_{2}, for each flow range application, and compared τ_{1} to T_{1} spin-lattice and τ_{2} to T_{2}^{*} spin-spin relaxation times for each class of material measured.
[0044] References:
[0045] 1. Abramowitch, M., Stegun, I.A., eds. "Handbook of Mathematical Functions". Ninth Edition. Dover Publications Inc. 1965
[0046] 2. Balanis, C.A., "Advanced Engineering Electromagnetics". John Wiley and sons 1989.
[0047] 3. Den Hartog, J.P., "Mechanics". McGraw Hill Book Co., 1948. Dover Publications Inc. 1961.
[0048] 4. Poularikas, A.D. ed. "The Transforms and Application Handbook" CRC IEEE Press 1995
[0049] 5. Slichter, C.P. "Principles of Magnetic Resonance", Third Edition. Springer-Verlog 1989.
[0050] 6. Smythe, W.R. "Static and Dynamic Electricity", Second Edition. McGraw Hill Book Co 1950.
[0051] 7. Wollin, E. "Magnetic Resonance Analyzing Flow Meter and Flow Measuring Method". U.S. Patent No. 6,452,390 BI. Sept. 17, 2002. European Patent 1230529 BI June 9, 2006.
[0052] Wollin, E. "Apparatus and Method for Measuring Velocity and Composition of Materials in and Near a Borehole". U.S. Patent Application Publication. U.S. 2016/0097664A1 April 2016.
[0053] Sacolick, Laural. et. al, Magn. Reson. Med. 2010 May: 63(5): 1315-1322.
[0054] Jahnke, E. and Emde, F. "Tables of Functions", $4^{\text {th }}$ ed., Dover Publications inc., 1945

